
Computer Communications 147 (2019) 14–20

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Software-defined forensic framework for malware disaster management in
Internet of Thing devices for extreme surveillance
Visu P. a,∗, Lakshmanan L. b, Murugananthan V. c, Meenaloshini Vimal Cruz d

a Department of CSE, Velammal Engineering College, Chennai, Tamilnadu, India
b Department of CSE, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
c SEEMIT, Institute Technology Pertama, Mantin, Negeri Sembilan, Malaysia
d Department of Computer Science, Keene State College, Keene, USA

A R T I C L E I N F O

Keywords:
Malware
Portable and executable files
Cybercrime
Malware disaster management
Extreme surveillance

A B S T R A C T

Malware perception is an important technique which has to be explored to analyze the corpus amount of
malware in short duration for effective disaster management. Accurate analyses of malware must be done
by detecting them in initial stage in an automatic way to avoid severe damage in Internet of Thing devices.
This is enabled by visualizing malware by using a software-defined visual analytic system. Though many auto
analysis techniques are present visualization of malware is one of the effective techniques preferred for large
analysis. Malware exhibits malicious behavior on computing devices by installing harmful software such as
viruses. The existing static and dynamic form of malware detection is an inefficient technique as it involve in
disassembling of malicious code. In this project, the visualization of malware in the form of images is proposed
in order to find the malicious insertion on the executable files of computing devices for extreme surveillance.
The malware detection becomes easier to visualize the malicious behavior in form of images by feature based
classification of images as the global property of exe gray scale image is unchanged. This will be an eye open
in healing the security issues in cyber-crime and provide extreme surveillance.

1. Introduction

Malware are the malicious software which often gain access to
computer and cause damage to the in Internet of Thing (IoT) devices,
without the knowledge of legitimate user. The characteristics of mal-
ware depend on their type. Analysis of malware states that, not all
malwares are malicious. Some malware are designed for monitoring the
data and stealing the content without causing damage to the system.
Usually malware either acts as data stealer or some time cause severe
damage to the system, like crashing the system in extreme stages. So it
is important to block the malware and heal the existing one for extreme
surveillance. Delayed detection of malware is some time useless. So, it
is important to do reverse engineering to gain the access of data which
are lost for extreme surveillance.

Enormous amount of malware is peeping out every day in IoT
devices. So it is important to detect malware and analyze them. The
most common method used is signature based and anomaly based
detection. Due to increase in the malware and its variant, it is important
to improvise the method of malware detection by working in speeding
up of detection process [1]. To incorporate the method of increasing
the analysis speed, visualization technique is used. Visualization based

∗ Corresponding author.
E-mail addresses: pandu.visu@gmail.com (Visu P.), laks14@yahoo.com (Lakshmanan L.), mail_muru@yahoo.com (Murugananthan V.),

meenalosini.Vimal.Cruz@keene.edu (M.V. Cruz).

analysis help in obtaining the gist of malware and easier classification
in time consuming manner. The classical approach like signature based
detection and behavioral analysis method does not support detection
of new emerging malware for extreme surveillance. Massive amount of
samples have made the need for automated data analysis. To incorpo-
rate them, in analysis of system calls and there pattern have to be made
for classifying in terms of malicious or non malicious. Static analysis
offers the foremost complete coverage however it always suffers from
code obfuscation. The practicable needs to be unpacked and decrypted
before analysis, and even then, the analysis are often hindered by issues
of wild quality. Dynamic analysis is additional economical and does not
would like the practicable to be unpacked or decrypted. However, it is
time intensive and resource overwhelming, therefore raising quantifia-
bility problems. To improve the existing analysis approach visualization
method is preferred.

The visualization of malware is made either by analyzing individual
malware or can be made by analyzing the group of malware in IoT
Devices [2,3]. Individual analysis of malware is easier then cluster
analysis but they are not suitable for larger collection of malware. So to
analysis enormous malware two important are widely preferred namely

https://doi.org/10.1016/j.comcom.2019.08.013
Received 26 June 2019; Received in revised form 30 July 2019; Accepted 11 August 2019
Available online 13 August 2019
0140-3664/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comcom.2019.08.013
http://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2019.08.013&domain=pdf
mailto:pandu.visu@gmail.com
mailto:laks14@yahoo.com
mailto:mail_muru@yahoo.com
mailto:meenalosini.Vimal.Cruz@keene.edu
https://doi.org/10.1016/j.comcom.2019.08.013

Visu P., Lakshmanan L., Murugananthan V. et al. Computer Communications 147 (2019) 14–20

feature based and image based approach. Visualization tool mainly
depend on data which are usually obtained either by static or dynamic
analysis. The static analysis is made without actually executing the
code. They just involved in checking the basic property like file type,
strings, checksum etc. Analyzing the data after execution is called as
dynamic analysis.

The analysis made by virtualization can be done either by physical,
virtual or emulated format. The execution of samples is done directly
on the main system, where the operation is installed is called physical
analysis. They are not much secure because they are having same archi-
tect as host machine. The main disadvantage is malicious file can easily
affect the hardware, as it is depended on it. So virtualization technique
is widely preferred, as they help in interaction between host software
and their supported hardware. In this technique, the data’s are made
to execute on the virtual machine monitoring for extreme surveillance.
Other technique used is emulation type where the isolation is made for
physical machine. The major drawback of emulation is when sandbox
is detected; they gain full access to system and leads to severe problem.
Still sandboxes are preferred for translating the states of register or CPU
to the top level information like registry and file operation. Visualize
the malicious behavior in form of images by feature based classification
of images as the global property of exe gray scale image is unchanged.
This will be an eye open in healing the security issues in cyber crime.

2. Related works

Visualization is done by analyzing the image of malware which are
generated based on its behavior. The behavioral pattern is proposed
by Lakshmanan Nataraj et al. [4], obtain behavioral feature and are
executed in the virtual machine. To discriminate the varying behavioral
pattern unique color is assigned to each behavior. Once the unique
color to behavioral mapping is done, malware images are generated
by clustering the behaviors. Visualization tool mainly depend on data
which are usually obtained either by static or dynamic analysis. The
static analysis is made without actually executing the code. They just
involved in checking the basic property like file type, strings, checksum
etc. Analyzing the data after execution is called as dynamic analysis.
The analysis made by virtualization can be done either by physical,
virtual or emulated format. The execution of samples is done directly
on the main system, where the operation is installed is called physical
analysis. They are not much secure because they are having same archi-
tect as host machine. The main disadvantage is malicious file can easily
affect the hardware, as it is depended on it. So virtualization technique
is widely preferred, as they help in interaction between host software
and their supported hardware. In this technique, the data’s are made
to execute on the virtual machine monitoring. Other technique used is
emulation type where the isolation is made for physical machine. The
major drawback of emulation is when sandbox is detected; they gain
full access to system and leads to severe problem. Still sandboxes are
preferred for translating the states of register or CPU to the top level
information like registry and file operation.

The behavioral features are obtained by executing the API in the
virtual machine. This ensures that the main system is not affected by
the malicious code execution. The accurate nature of malware can be
obtained by analyzing the user mode API calls. Kernel mode API is
usually not preferred for analyzing the behavior because it often results
in flooding, which in turn will affect the behavioral image. Random
allocation of color mapping is not preferred because they might not
give meaning full information. So the behavioral are clustered based
on the malicious range. This is done for easier analysis. As all the API
calls are not malicious, it is important to classify them based on level
of maliciousness. Based on the similarities in the behavior, the images
can be further classified to find the malware variant. It is proposed by
Conti, G. and Bratus [5].

The framework is developed by Trinius, P. Holz, [6] based on
visualization to perform reverse engineering. By this technique they

determine the functional unit and retrieve the obfuscated data by
performing visualization. They visualize the state transition in the
address and link. While the thread graph are used for representing the
visualized result. The visual environment analyze of code is made to
understand them better. The classification of various binary fragments
is made based on the predetermined statistical approach [7]. Both static
and dynamic analysis based clustering and categorizing of malware is
made. Knote, et al. [8,9] has proposed, the protection of host machine
is enabled by sandbox, they provide virtual environment for execution
of malicious codes.

Kolter, J. Z. and Maloof, [10] have proposed a methodology where
each section of PE is mapped to raw binary format. Sections are resized
if there are overlapping found, in order to make them contiguous with
adjacent one. Mapping of binary using PE is not an easy task, as the
data will be in any format, such as encrypted, changed by addition
of codes, compressed etc. [11]. So to map them feature matching is
done by finding the nearest neighbor. This is done by determining the
Euclidean distance of sample to malicious and benign data sets. To
make an appropriate determination, samples are matched with respect
to predetermined threshold value. Based on this the malicious and
benign data sets are grouped into clusters and ball tree is formed.

Sibi Chakkaravarthy et al. [12] proposed a novel technique to de-
tect advanced persistent threat. The proposed technique uses a hybrid
analysis technique, which compares the system state of the operating
system before and after execution of the malware. In this technique, the
authors utilized the end feature of forensic framework of comparing the
system states of OS image. However, the authors achieved a reasonable
amount of accuracy in the results but the entire method took a longer
time for execution due to its original behavior of comparing the two
OS images.

Further, the same author, Sibi Chakkaravarthy et al. [13] pro-
posed a robust Intrusion Detection System for attacks against Wireless
networks. The author used two mathematical model namely Hidden
Markov Model (HMM) and Kernel Density Estimation (KDE) for Intru-
sion Detection Engine. Further, the model used a feedback mechanism
to reduce the false positives. The method yields a tremendous results
in intrusion detection for wireless networks.

The binary executables are converted to 1 Dimension vector by
grouping one byte. They are further converted to intensity value
of the pixel. The byte plot and Markov plot proposed by Rhiannon
Weaver [4], 2-dimensional image is obtained. To convert executable
to byte plot, each and every pixel is represented in terms of byte. The
byte plot 0 is represented as black and 225 as white. The first left pixel
present in the Byte plot is the initial value of executable. Second byte is
the one present in the top row of second column. Similarly the plotting
is made until the last element of row is reached. The process is repeated
from the last row of left most column. Next value will be plotted at
the left most column of the row below it. In case of blank space or
end off file, the zeros are added to it, to perform zigzag byte plotting.
Markov plot based visualization uses byte level transition for creating
signature. The encoding based transition is made by the packer. Further
features are extracted by using intensity based, Gabor base and wavelet
based methods. A detailed explanation of malware evasion, behavior,
propagation, etc., are clearly given in [14].

E Malicious programming alleged malware it represents a note-
worthy risk to the security of PC frameworks. The huge number of
hosts in the web is tainted with malware as PC infections, web worms
and Trojan ponies. The dynamic investigation of malware pairs during
run-time gives an instrument to describing and shielding against the
risk of malevolent programming. Vindictive projects can play out a
wide range of capacities, for example, taking, scrambling or erasing
delicate information, adjusting or seizing center processing capacities
and observing client’s PC movement without their authorization. Many
techniques may rise to detect and remove malware but no algorithms
had guarantee of removing entire malware codes or program. Malwares
may also convert machine language code to assembly language where

15

Visu P., Lakshmanan L., Murugananthan V. et al. Computer Communications 147 (2019) 14–20

the user gets to know about the details of encrypted codes. The mal-
wares can also create a backdoor to the interrupter after it is planted.
Malwares can also be planted via links and messages from unknown
source. System cannot identify the malware as it looks like system de-
fined programs but it behaves to malfunction the target system or drive.
Various examination devices have been recommended that naturally
remove the conduct of an obscure program by executing it in a confined
domain and recording the working framework calls that are conjured.
One procedure for securing against malware is to keep the hurtful
programming from accessing the objective PC. Therefore, antivirus
programming, firewalls and different techniques are utilized to help
ensure against the interruption of malware, notwithstanding checking
for the nearness of malware and vindictive action recuperating from
assaults. Malware utilize an assortment of physical and virtual intends
to spread malware that contaminate gadgets and systems. Noxious
projects can be conveyed to a framework with a USB drive or can
spread over the web through downloads, which consequently download
malevolent projects to frameworks without the client’s endorsement or
information. Malware can likewise be found on cell phones and can
give access to the gadget’s parts, for example, the camera, mouthpiece,
GPS or accelerometer. Malware can be contracted on a cell phone if
the client downloads an informal application or in the event that they
click on a malignant connection from an email or instant message. A
cell phone can likewise be contaminated through a Bluetooth or Wi-
Fi association. Malware is discovered substantially more usually on
gadgets that run the Android os similarly to ios gadgets. Malware on
Android gadgets is generally downloaded through applications. Signs
that an Android gadget is contaminated with malware incorporate
irregular increments in information utilization, a rapidly disseminating
battery charge or calls, messages and messages being sent to the gadget
contacts without the client’s learning. So also, if a client gets a message
from a perceived contact that appears to be suspicious, it might be from
a kind of a portable malware that spreads between gadgets. Apple ios
gadgets are seldom tainted with malware on the grounds that Apple
cautiously vets the applications sold in the App Store. Be that as it may,
it is as yet workable for an ios gadget to be contaminated by opening an
obscure connection found in an email or instant message. Ios gadgets
will turn out to be increasingly powerless if prison broken.

Younghee Park et al. [15] propose detection of malicious code (mal-
ware) continues to be a haul as hackers devise new ways that to evade
out there strategies. The proliferation of malware and malware variants
needs new advanced strategies to sight them. The planned technique
to construct a typical behavioral graph representing the execution
behavior of a family of malware instances. The strategy generates one
common behavioral graph by clump a group of individual behavioral
graphs, that represent kernel objects and their attributes supported call
traces. The ensuing common behavioral graph encompasses a common
path, known as HotPath, that is determined altogether the malware
instances within the same family. The planned technique shows high
detection rates and false positive rates on the brink of 1/3. The derived
common behavioral graph is extremely ascendable notwithstanding
new instances side. It is conjointly strong against call attacks.

M. Ahmadi and A. Sami [16] propose a malware production, while
not being an organized business, has reached a level where auto-
matic malicious code generators/engines are easily found. These tools
are able to exploit multiple techniques for countering anti-virus (AV)
protections, from aggressive AV killing to passive evasive behaviors
in any arbitrary malicious code or executable. Development of such
techniques has lead to easier creation of malicious executables. Con-
sequently, an unprecedented prevalence of new and unseen malware is
being observed. Reports suggested a global, annual economic loss due
to malware exceeding $13bn in 2007. 1 Traditional signature-based
antivirus methods struggle to cope with polymorphic, metamorphic
and unknown malicious executables. And analyzing and debugging
obfuscated programs is a tricky and cumbersome process.

Shaila Sharmeen et al. [17] propose AN Industrial IoT networks
deploy heterogeneous IoT devices to satisfy a large vary of user needs.

These devices are sometimes pooled from personal or public IoT cloud
suppliers. a major variety of IoT cloud suppliers integrate smartphones
to beat the latency of IoT devices and low process power issues. How-
ever, the combination of mobile devices with industrial IoT networks
exposes the IoT devices to vital malware threats. Mobile malware is
that the highest threat to the protection of IoT knowledge, userâe™s
personal data, identity, and corporate/financial data. This paper ana-
lyzes the efforts concerning malware threats geared toward the devices
deployed in industrial mobile-IoT networks and connected detection
techniques. we have a tendency to thought-about static, dynamic,
and hybrid detection analysis. during this performance analysis, we
have a tendency to compared static, dynamic, and hybrid analyses on
the premise of information set, feature extraction techniques, feature
choice techniques, detection strategies, and also the accuracy achieved
by these strategies. Therefore, author determine suspicious API calls,
system calls, and also the permissions that are extracted and chosen as
options to sight mobile malware. this may assist application developers
within the safe use of arthropod genus once developing applications for
industrial IoT networks.

A. Rodríguez-Mota et al. [18] propose the heterogeneous nature
of the Internet of Things (IoT) represents a big challenge in many
different technical and scientific areas, among them Security. In this
sense, security becomes an extremely complex problem as it is present
in every aspect of the IoT ecosystem, from sensors and data acquisition
hardware to front-end software applications and sophisticated user
devices. This complexity expands as there is not consensus among
all stakeholders towards the definition of general technical standards,
specifications, system representations and use policies. In this context,
this paper presents a state of intention for a research project oriented to
construct a set of tools to characterize security attack surfaces for IoT
systems solutions. The proposed research includes the development of a
visual grammar aimed to depict IoT systems at a high-abstraction level
together with the construction of objects profiles, which in conjunction
will provide building blocks and mechanisms to evaluate or identify
insecure IoT scenarios.

Hsien-De Huang et al. [19] propose a behavioral malware analysis
system TWMAN. In their study focuses on exploitation real operation
system (OS) setting to analysis malware behavioral. several researchers
attempt to use virtual machine (VM) system to observe the malware
behaviors. These malware samples can solely compromise the virtual
OS or virtual machine, that cannot replicate within the real OS or
real setting. Therefore, some malware researchers do not wish their
systems to be analyzed in VM setting, as a result of the analyzer
cannot abundant helpful data in VM setting. There are several Anti-
VM techniques that are accustomed obstruct the gathering, analysis,
and reverse engineering options of the VM primarily based malware
analysis platform. There are variations between these 2 behaviors:
malware behavior in real setting and in virtual environment. Therefore,
malware investigator would get inaccurate analysis results from VM
primarily based malware analysis platform. so as to retrieve correct
malware behavioral data, we had like versatile, adaptable, and quickly
analysis setting, that may discovery malware behavioral in real oper-
ation system setting, and which may quickly restore clear operation
system to analysis another malware sample. For this reason, they study
developed Taiwan Malware Analysis Net (TWMAN), a true operation
system setting for malware behavioral analysis and analysis report.

Mahmood Yousefi-Azar et al. [20] propose a completely unique
theme to sight malware that we have a tendency to decision Malytics. It
is not addicted to any explicit tool or OS. It extracts static options of any
given computer file to tell apart malware from benign. Malytics consists
of 3 stages: feature extraction, similarity activity, and classification. The
3 phases are enforced by a neural network with 2 hidden layers and an
output layer. We have a tendency to show feature extraction that is
performed by tf-simhashing is love the primary layer of a selected neu-
ral network. They judge Malytics performance on each mechanical man
and Windows platforms. Malytics outperforms a large vary of learning-
based techniques and conjointly individual progressive models on each

16

Visu P., Lakshmanan L., Murugananthan V. et al. Computer Communications 147 (2019) 14–20

Fig. 1. Image based classification.

platforms. They show Malytics is resilient and strong in addressing
zero-day malware samples. The F1-score of Malytics is ninety seven.
21% and 99.45% on mechanical man dex file and Windows letter of
the alphabet files, severally, within the applied data sets. The speed
and potency of Malytics also are evaluated.

Parvez Faruki et al. [21] a propose mechanical man Smartphones
are increasing in quite a great amount thanks to its open design. Thanks
to its increase the malware apps have conjointly been increasing. There
are several anti-malware firms WHO are operating to cut back the
impact of malware. This paper provides AN abstract of the malware
gift and its harmful effects. They are gaining huge market share thanks
to many reasons, together with open design and recognition of its
application programming interfaces (APIs) in developer community. In
general, smartphone has become pervasive thanks to its price effective-
ness, simple use and accessibility of workplace applications, Internet,
games, vehicle steering exploitation location primarily based services
except for standard voice calls, electronic messaging and multimedia
system services. Increase in variety of mechanical man smartphone
and associated financial edges has light-emitting diode to an expo-
nential rise in mechanical man malware apps between 2011–2014.
Educational researchers and business anti-malware firms have complete
that standard signature primarily based and static analysis strategies
are vulnerable against rife stealing techniques like cryptography, code
transformation and analysis setting detection approach. This realization
has light-emitting diode to the utilization of behavior primarily based,
anomaly primarily based and dynamic analysis strategies. United single
approach could also be ineffective against on top of techniques, com-
plementary approaches could also be combined for effective malware
app detection. tho’ several reviews extensively cowl smartphone OS

security, as mechanical man smartphone have captured quite seventy
fifth market, we have a tendency to believe a deep examination of
mechanical man security, malware growth, anti-analysis strategies and
mitigation resolution specifically for mechanical man is needed. During
this review, authors discuss mechanical man security social control and
its problems, mechanical man malware growth timeline between 2010–
2013, malware penetration and anti-analysis techniques employed by
malware authors to bypass analysis strategies. This review offers AN
insight into the strength and weakness of identified analysis method-
ologies and therefore offer a platform for research practitioners towards
proposing next generation mechanical man security, malware analysis
and malicious app detection strategies.

Sunny Behal et al. [22] propose, the comprehensive protection of
a computer network from malware is extremely important. The in-
creasing usage of interactive internet applications in the areas of stock
trades, medicine, weather forecasting, banks, businesses, education,
defense, research etc. has induced a rise in risks and possibilities of
misuse of computer networks. Over the last decade, malicious software
or malware in the form of viruses, worms, Trojan horses, Botnets
has risen to become a primary source of most of the threats used
for scanning, distributed denial-of-service (DDoS) activities and direct
attacks, taking place across the Internet [23]. A number of solutions
have been proposed in literature to defend against such threats from
malware. Majority of these solutions uses the concept of inbound traffic
approach for detection. The main goal of this paper is to work out
a pragmatic solution to protect the network from the malware by
exploring the feasibility of the concept of analysis of outbound traffic
i.e Extrusion traffic only instead of intrusion traffic. Four different types
of malware have been analyzed to check the validity of the proposed
approach.

Guillermo Suarez-Tangil et al. [24] propose sensible devices
equipped with powerful sensing, computing and networking capabil-
ities have proliferated recently, starting from standard smartphones
and tablets to web appliances, smart TVs, et al. that may shortly seem
(e.g., watches, glasses, and clothes). One key feature of such devices is
their ability to include third-party apps from a spread of markets. This
poses robust security and privacy problems to users and infrastructure
operators, notably through code of malicious (or dubious) nature that
may simply get access to the services provided by the device and collect
sensory knowledge and private data. Malware in current sensible
devices – mostly smartphones and tablets – have rocketed within the
previous couple of years, in some cases supported by subtle techniques
on purpose designed to beat security architectures presently in use by
such devices. despite the fact that necessary advances are created on
malware detection in ancient personal computers throughout the last
decades, adopting and adapting those techniques to sensible devices
could be a difficult drawback. For instance, power consumption is one
major constraint that produces unaffordable to run ancient detection
engines on the device, whereas externalized (i.e., cloud-based) tech-
niques rise several privacy issues. this text examines the matter of
malware in sensible devices and up to date progress created in detection
techniques. Authors 1st gift a close analysis on however malware has
evolved over the last years for the foremost standard platforms. They
determine exhibited behaviors, pursued goals, infection and distribu-
tion methods, etc. and supply various examples through case studies
of the foremost relevant specimens. Their next survey, classify and
discuss efforts created on detective work each malware and alternative
suspicious code (grayware), concentrating on the twenty most relevant
techniques planned between 2010 and 2013. Supported the conclusions
extracted from this study, they finally offer constructive discussion on
open analysis issues and areas wherever we have a tendency to believe
that additional work is required.

17

Visu P., Lakshmanan L., Murugananthan V. et al. Computer Communications 147 (2019) 14–20

Fig. 2. Accuracy of LBP based feature extraction using different classifiers on small sample of .exe files.

3. System review

The main objective of project is to detect malware in IoT devices by
visualizing the malware in form of images for extreme surveillance. The
existing static and dynamic form of malware detection is an inefficient
technique to detect malware [25,26]. The time taken for detecting
malwares is larger by the existing scheme. Malware exhibits mali-
cious behavior on executables files of computing devices by installing
harmful software such as viruses. In this project, the visualization of
malware in the form of images is proposed in order to find the malicious
insertion on the executable files of computing devices for extreme
surveillance [27].

The executable files are defined with structure that is segmented
into different sections. The header and other section of this structure
on the executable file retain the global format of files with different
context [28]. The data section of this structure provides different exe
files depending on the context of exe file [29]. This property on exe-
cutable files is used to determine the malicious code on the exe file in
form of image using the comparison of the non-malicious and malicious
files. The generated malware injects the malicious data and pack the
collection of malware data to obfuscate exe file. Hence it is very
difficult to detect the injected malware on the exe file by the existing
malware scanner. To detect malware on such packed file, the header
section of exe file is used to classify the malware variant. The malware
detection becomes easier to visualize the malicious behavior in form of
images by feature based classification of images with unchanged global
property in the image.

4. Strategy

Image based classification involves in converting the binary exe-
cutable files to images. Initially binaries are converted to vectors where
each vector is converted into gray scale images. By these sequential
steps as given in Fig. 1, the executables are visualized as images.

The non-malicious and malicious samples in form of .exe are col-
lected as database. To compute image classification by feature extrac-
tion, texture based feature extraction by using local binary pattern
algorithm is proposed for extreme surveillance. The input image of .exe
files are shown in Fig. 3, does not have any shape or structure with
defined format [30]. So the texture based classification approach has to
be made. Local binary pattern work well on texture based classification.
The LBP algorithm is given by gray level computation. The operator
pc is set as center pixel, surrounded by 8 neighboring pixel pi where
i = 0 to 7. The gray value of pc is set as threshold value and it is
compared with the pi values. If the gray value of pi is greater than the
pc values, the pi values are set to 0. If it is lesser they are set to one.

Fig. 3. Confusion matrix of LBP based feature extraction using random forest and
decision tree.

Later the summation of 2Pi values is determined and the gray scale
value is computed as uniform pattern having pi value with only one
transition. The LBP feature histogram is computed features are followed
by comparison of features using machine learning algorithm as given
in Fig. 2. Logistic regression, SVM, decision tree and random forest are
computed for the exe based images.

Analyzed result shows that using Random forest and decision tree,
malware detection using LBP generates best result. So the combination
of these two classifiers is made and output is generated. The accuracy
of LBP based feature extraction using random forest and decision tree
is obtained inform of confusion matrix as shown in Fig. 3. It is used to
describe the performance of a classification model for machine learning
algorithm. Each column of the matrix represents the instances in a
predicted class while each row represents the instances in an actual
class. Fig. 5 shows the generated convolution matrix generated for
combination of decision tree and random forest based algorithm. The
x and y axis of confusion matrix represent the malware families [31].
The obtained result based on classifier shows the number of match in
train and test phase.

Further the program is computed using Raspberry Pi for determin-
ing forensic on IoT devices (Fig. 4). The LBP based approach obtains a
score of 0.890 with 87% of precision.

Determining accuracy using random forest classifier and decision
tree. Different samples of non malicious exe files are tested against the

18

Visu P., Lakshmanan L., Murugananthan V. et al. Computer Communications 147 (2019) 14–20

Fig. 4. Experimental setup used for obtaining output of LBP based feature extraction
using Raspberry Pi.

Fig. 5. Obtaining output of LBP based feature extraction using Raspberry Pi.

different malicious samples using LBP with decision tree and random
forest based classifier. The analyzed result shows that accuracy of 89%
is obtained. This ensures the detection of malware in .exe with less
number of false positive.

5. Conclusion

Visualization of malware in form of images has been done to detect
malware in portable and executable file. The.exe files are converted in
form images. The main benefit of visualizing malware as an image is
that the varying sections of the binary can be easily bifurcated. The
detection of malware is determined by comparing the images of .exe
file to be tested with the malicious database. The detection process
involves in extraction of feature from the images and classification
those features using local binary pattern for extreme surveillance.
The classification of extracted feature output is made using machine
learning algorithm namely logistic regression, SVM, decision tree and
random forest. Among them random forest and decision tree based
classifiers are determined to be the best classifiers obtaining maximum
accuracy of 89%. This is mainly because of the high inter-class variation
among the malware binaries retaining global features of malware. The
results obtained are quite promising as these approaches able to classify
malware samples in IoT devices much faster than all those solutions
that rely on the manually extraction of features and hence it is more
scalable. In future, the proposed framework can be extended with
memory firewall techniques. These memory firewall techniques can be
used to protect the malware illegally accessing memory portion.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] Ban Xiaofang, Chen Li, Hu Weihua, Wu Qu, Malware variant detection using
similarity search over content fingerprint, in: 26th Chinese Control and Decision
Conference, 2014.

[2] Jehyun Lee, Heejo Lee, GMAD: Graph-based malware activity detection by DNS
traffic analysis, Comput. Commun. 49 (2014) 33–47.

[3] tAntônio J. Pinheiro, Jeandrode M. Bezerra, Caio A.P. Burgardt, Divanilson R.
Campelo, Identifying IoT devices and events based on packet length from
encrypted traffic, Comput. Commun. 144 (2019) 8–17.

[4] Rhiannon Weaver, Visualizing and modeling the scanning behavior of the
conficker botnet in the presence of user and network activity, IEEE Trans. Inf.
Forensics Secur. 10 (5) (2015).

[5] G. Conti, S. Bratus, Voyage of the Reverser: A Visual Study of Binary Species,
Black Hat USA, 2010.

[6] P. Trinius, T. Holz, J. Gobel, F.C. Freiling, Visual analysis of malware behavior
using treemaps and thread graphs, in: International Workshop on Visualization
for Cyber Security (VizSec), 2009, pp. 33–38.

[7] G. Conti, S. Bratus, B. Sangster, S. Ragsdale, M. Supan, A. Lichtenberg, R. Perez,
A. Shubina, Automated mapping of large binary objects using primitive fragment
type classification, in: Digital Forensics Research Conference (DFRWS), 2010.

[8] A. Knote, S. Edenhofer, S.V. Mammen, Neozoa: An immersive, interactive sand-
box for the study of competing, in: 2016 IEEE Virtual Reality Workshop on K-12
Embodied Learning Through Virtual & Augmented Reality (KELVAR), Greenville,
SC, 2016, pp. 5–10, http://dx.doi.org/10.1109/KELVAR.2016.7563675.

[9] P. Visu, N. Sivakumar, Auto Locating Apex-Base Points and Removing Leaf
petioles using straight line interpolation and bisection, Multimedia Tools and
Applications (Springer), http://dx.doi.org/10.1007/s11042-018-6579-z.

[10] J.Z. Kolter, M.A. Maloof, Learning to detect malicious executables in the wild,
in: International Conference on Knowledge Discovery and Data Mining, 2004,
pp. 470–478.

[11] G. Conti, S. Bratus, A. Shubina, A. Lichtenberg, R. Ragsdale, R. Perez-Alemany,
B. Sangster, M. Supan, A Visual Study of Binary Fragment Types, Black Hat USA,
2010.

[12] Chakkaravarthy S. Sibi, V. Vaidehi, P. Rajesh, Hybrid analysis technique to detect
advanced persistent threats, IJIIT 14 (2) (2018) 59–76, http://dx.doi.org/10.
4018/IJIIT.2018040104, Web. 2019.

[13] Sethuraman Sibi Chakkaravarthy, Dhamodaran Sangeetha, Vijayakumar Vaidehi,
Intrusion detection system for detecting wireless attacks in IEEE 802.11 net-
works, IET Netw. (2018) http://dx.doi.org/10.1049/iet-net.2018.5050, IET Dig-
ital Library, https://digital-library.theiet.org/content/journals/101049/iet-net.
20185050.

[14] S. Sibi Chakkaravarthy, D. Sangeetha, V. Vaidehi, A survey on malware analysis
and mitigation techniques, Comput. Sci. Rev. 32 (2019) 1–23, Elsevier.

[15] Younghee Park, Douglas S. Reeves, Mark Stamp, Deriving common malware
behavior through graph clustering, Comput. Secur. 39 (2013) 419–430, Elsevier.

[16] M. Ahmadi, A. Sami, Malware detection by behavioural sequential patterns,
Comput. Fraud Secur. 8 (2013) 11–19.

[17] Shaila Sharmeen, Shamsul Huda, Jemal H. Abawajy, Walaa Nagy Ismail, Malware
threats and detection for industrial mobile-IoT networks, IEEE Access 6 (2018)
15941–15957.

[18] A. Rodríguez-Mota, P.J. Escamilla-Ambrosio, J. Happa, J.R.C. Nurse, 2.Towards
IoT cybersecurity modeling: From malware analysis data to IoT system represen-
tation, in: 8th IEEE Latin-American Conference on Communications (LATINCOM),
2016.

[19] Hsien-De Huang, Chang-Shing Lee, Hung-Yu Kao, Yi-Lang Tsai, Jee-Gong Chang,
Malware behavioral analysis system: TWMAN, in: IEEE Symposium on Intelligent
Agent (IA), 2011.

[20] Mahmood Yousefi-Azar, Leonard G.C. Hamey, Vijay Varadharajan, Shiping Chen,
Malytics: A malware detection scheme, IEEE Access 6 (2018) 49418–49431.

[21] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj Singh Gaur,
Mauro Conti, Android security: A survey of issues, malware penetration and
defenses, IEEE Commun. Surv. Tutor. 17 (2014) 998–1022.

[22] Sunny Behal, Krishan Kumar, An experimental analysis for malware detec-
tion using extrusions, in: 2nd International Conference on Computer and
Communication Technology, 2011.

[23] Takanori Kudo, Tomotka Kimura, Yoshiaki Inoue, Hirohisa Aman, Kouji Hi-
rata, Stochastic modeling of self-evolving botnets with vulnerability discovery,
Comput. Commun. 124 (2018) 101–110.

[24] Guillermo Suarez-Tangil, Juan E. Tapiador, Pedro Peris-Lopez, Arturo Ribagorda,
Evolution detection and analysis of malware for smart devices, IEEE Commun.
Surv. Tutor. 16 (2) (2013) 961–987.

19

http://refhub.elsevier.com/S0140-3664(19)30689-9/sb1
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb1
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb1
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb1
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb1
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb2
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb2
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb2
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb3
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb3
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb3
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb3
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb3
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb4
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb4
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb4
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb4
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb4
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb5
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb5
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb5
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb6
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb6
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb6
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb6
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb6
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb7
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb7
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb7
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb7
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb7
http://dx.doi.org/10.1109/KELVAR.2016.7563675
http://dx.doi.org/10.1007/s11042-018-6579-z
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb10
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb10
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb10
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb10
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb10
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb11
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb11
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb11
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb11
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb11
http://dx.doi.org/10.4018/IJIIT.2018040104
http://dx.doi.org/10.4018/IJIIT.2018040104
http://dx.doi.org/10.4018/IJIIT.2018040104
http://dx.doi.org/10.1049/iet-net.2018.5050
https://digital-library.theiet.org/content/journals/101049/iet-net.20185050
https://digital-library.theiet.org/content/journals/101049/iet-net.20185050
https://digital-library.theiet.org/content/journals/101049/iet-net.20185050
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb14
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb14
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb14
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb15
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb15
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb15
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb16
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb16
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb16
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb17
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb17
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb17
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb17
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb17
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb18
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb18
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb18
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb18
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb18
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb18
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb18
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb19
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb19
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb19
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb19
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb19
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb20
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb20
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb20
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb21
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb21
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb21
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb21
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb21
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb22
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb22
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb22
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb22
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb22
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb23
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb23
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb23
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb23
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb23
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb24
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb24
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb24
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb24
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb24

Visu P., Lakshmanan L., Murugananthan V. et al. Computer Communications 147 (2019) 14–20

[25] Lakshmanan Nataraj, S. Karthikeyan, Gregoire Jacob, B.S. Manjunath, Malware
images: Visualization and automatic classification, in: International Symposium
on Visualization for Cyber Security (VizSec), 2011.

[26] D.A. Quist, L.M. Liebrock, Visualizing compiled executables for malware analysis,
International Workshop on Visualization for Cyber Security (VizSec) 2 (2009)
7–32.

[27] J. Goodall, H. Randwan, L. Halseth, Visual analysis of code security, in:
International Workshop on Visualization for Cyber Security (VizSec), 2010.

[28] A. Torralba, K.P. Murphy, W.T. Freeman, M.A. Rubin, Context-based vision
systems for place and object recognition, in: Intl. Conf. on Computer Vision
(ICCV), 2003.

[29] Mohammadhadi Alaeiyan, Saeed Parsa, MauroConti, Analysis and classification
of context-based malware behavior, Comput. Commun. 136 (2019) 76–90.

[30] A. Oliva, Torralba. A, Modeling the shape of a scene: A holistic representation
of the spatial envelope, Int. J. Comput. Vis. 42 (3) (2001) 145–175.

[31] R. Shi, M. Yang, Y. Zhao, F. Zhou, W. Huang, S. Zhang, A matrix-based
visualization system for network traffic forensics, IEEE Syst. J. 10 (4) (2016)
1350–1360, http://dx.doi.org/10.1109/JSYST.2014.2358997.

20

http://refhub.elsevier.com/S0140-3664(19)30689-9/sb25
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb25
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb25
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb25
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb25
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb26
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb26
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb26
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb26
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb26
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb27
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb27
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb27
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb28
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb28
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb28
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb28
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb28
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb29
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb29
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb29
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb30
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb30
http://refhub.elsevier.com/S0140-3664(19)30689-9/sb30
http://dx.doi.org/10.1109/JSYST.2014.2358997

	Software-defined forensic framework for malware disaster management in Internet of Thing devices for extreme surveillance
	Introduction
	Related works
	System review
	Strategy
	Conclusion
	Declaration of competing interest
	References

